
Automated Synthesis of Symbolic
Instruction Encodings from I/O Samples

Patrice Godefroid

Microsoft Research

pg@microsoft.com

Ankur Taly ∗

Stanford University

ataly@stanford.edu

Abstract

Symbolic execution is a key component of precise binary program
analysis tools. We discuss how to automatically boot-strap the con-
struction of a symbolic execution engine for a processor instruction
set such as x86, x64 or ARM. We show how to automatically syn-
thesize symbolic representations of individual processor instruc-
tions from input/output examples and express them as bit-vector
constraints. We present and compare various synthesis algorithms
and instruction sampling strategies. We introduce a new synthesis
algorithm based on smart sampling which we show is one to two
orders of magnitude faster than previous synthesis algorithms in
our context. With this new algorithm, we can automatically synthe-
size bit-vector circuits for over 500 x86 instructions (8/16/32-bits,
outputs, EFLAGS) using only 6 synthesis templates and in less than
two hours using the Z3 SMT solver on a regular machine. During
this work, we also discovered several inconsistencies across x86
processors, errors in the x86 Intel spec, and several bugs in previ-
ous manually-written x86 instruction handlers.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

General Terms Languages, Verification

Keywords Program Synthesis, Symbolic Execution, x86

1. Introduction

Symbolic execution is a key component of precise binary pro-
gram analysis tools, for test generation [6, 17], program verifi-
cation [2, 20], malware analysis [1, 23], and other applications.
Symbolic execution engines are traditionally written by hand [1,
2, 6, 17, 20, 23]: the effect of executing each individual instruc-
tion is described by a symbolic constraint, called symbolic instruc-
tion encoding, written manually and derived by reading the proces-
sor instruction manual. Unfortunately, the semantics of the instruc-
tion set of general-purpose processors such as x86, x64 or ARM

∗ The work of this author was done mostly while visiting Microsoft.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

is very complex. For instance, x86 includes hundreds of instruc-
tions whose semantics is described in more than 2,000 pages di-
vided in 3 volumes. This complexity makes the manual develop-
ment of symbolic-execution engines tedious (many instructions),
error-prone (many corner cases), partial (not all instructions are
usually covered) and imprecise (approximations are often used).
Moreover, the official reference manual is often under-specified and
may itself contain errors.

In this work, we explore a radically different approach to devel-
oping symbolic-execution engines: what if most symbolic instruc-
tion encodings could be synthesized automatically?

To do this, we study how to adapt and extend recent advances on
automatic program synthesis. Given a functional specification and
a set of building blocks, called components, possibly combined to-
gether as described in a solution template or program sketch (i.e.,
a program with holes), automatic program synthesis consists of
searching the space of all possible template completions for a fully-
defined program (i.e., with no holes left) that satisfies the specifi-
cation. In our context, we do not have access to a full functional
specification of individual processor instructions — such a specifi-
cation is precisely what we want to infer. But we have access to a
cheap and fast specification oracle: we can execute instructions on
a processor and observe their input/output behaviors.

Program synthesis from I/O samples has been recently investi-
gated in [13]. There, an I/O oracle-guided synthesis algorithm is
presented for loop-free programs. This algorithm consists of com-
puting a set of I/O samples, then synthesizing a candidate program
that satisfies those samples (to check whether such a program ex-
ists), then computing a distinguishing input that distinguishes this
candidate program P from some other non-equivalent candidate
program P ′ (to check whether P is unique), and if such an input ex-
ists, then query the I/O oracle with this distinguishing input to elim-
inate either P or P ′ as a possible solution. This counter-example-
guided iterative synthesis process is repeated until one unique so-
lution remains, or no solution exists if the synthesis template is too
constrained. The algorithm assumes the existence of a verification
oracle which can determine whether a solution is “correct”.

In our context, we do not have access to such a verification or-
acle. For instructions with small I/O signatures, such as 8-bit in-
structions, exhaustive testing can provide a verification oracle, but
exhaustive testing does not scale to 16-bit or 32-bit instructions.
Another practical hurdle is that the counter-example-guided itera-
tive synthesis algorithm of [13] can be very expensive when many
iterations are needed, as we will show with results of experiments
in Section 6.

To improve on this, we propose a new synthesis algorithm based
on smart sampling which we show is one to two orders of magni-
tude faster than previous synthesis algorithms in our context. Given
a specific template, the main idea is to generate upfront a set of
distinguishing inputs which uniquely determine each possible so-

lution refining the template. This way, our new synthesis algorithm
converges faster to the unique solution, without requiring any ad-
ditional expensive synthesis-refinement steps. Synthesis with smart
sampling is more efficient when a template is repeatedly used for
many instructions, as is the case in our context.

In this work, we want to automatically generate concise yet pre-
cise symbolic instruction encodings that can be used for bit-precise
symbolic execution of large programs and long execution paths.
Conciseness is important for scalability, while precision is key to
detect subtle program bugs (for instance due to integer overflows).
For these reasons, we adopt bit-vector constraints supported by
SMT solvers as synthesis components.

For automatic synthesis to be practical, synthesis templates
should be constrained enough to define a tractable search space,
yet abstract enough to allow a simple representation of many pos-
sible solutions. Perhaps surprisingly, we show that the I/O behavior
of over 500 x86 instructions (8/16/32-bits, outputs, EFLAGS) can
be precisely captured with only 6 synthesis templates. Using these
templates and our new smart sampling synthesis algorithm, we can
automatically synthesize bit-vector circuits for all those 500+ in-
structions in less than two hours using the Z3 SMT solver on a
regular x86 machine. Moreover, the size of the synthesized cir-
cuits is either constant or linear in the number of input/output bits,
satisfying our conciseness requirement.

This paper is organized as follows. In Section 2, we precisely
define the problem addressed in this work. Then, we review in Sec-
tion 3 existing automatic synthesis approaches and discuss their
applicability to our context. We introduce in Section 4 our new syn-
thesis algorithm based on smart sampling. In Section 5, we present
6 synthesis templates that together abstract the semantics of over
500 x86 instructions, and we discuss properties of those templates.
Next, we compare in Section 6 the performance of several synthesis
algorithms with those templates. We discuss our overall results for
x86, lessons learned and limitations in Section 7. We then discuss
other related work in Section 8, and conclude in Section 9.

2. Problem Definition

We consider a processor which can execute a set of instructions.
In this work, we focus on ALU instructions and will not consider
floating point and SIMD instructions. We will also ignore specific
addressing modes and assume that an instruction has some inputs
and outputs, but we will not distinguish where those inputs or out-
puts are being stored, e.g., in a register or a memory location. How-
ever, we do consider the sizes of the input and output arguments of
an instruction, which we assume are known (i.e., are not inferred
automatically).

Formally, we define an instruction instance I as a function that

takes a known fixed ordered set~i of inputs, each of a known fixed
size, which may be read during the execution of the instruction,
and returns a known fixed ordered set ~o of outputs, each of a
known fixed size, which may be written during the execution of the
instruction. We thus assume that the execution of each instruction
instance is deterministic and always terminates. In what follows, we
will treat each output o in ~o separately, abuse notation by writing

o = f(~i), and calling such a function an instruction instance.
For instance, SHL is an x86 instruction, while SHL8 is an in-

struction instance that takes two 8-bit values as inputs and returns
an 8-bit value as output representing the main result, and SHL8CF

is another instruction instance that takes again two 8-bit values as
inputs but returns a boolean value representing the value of the CF

flag (part of the x86 “EFLAGS”) after executing the instruction.
The problem we consider in this work is to automatically syn-

thesize a (concise and precise) representation of function f for a

given instruction instance. We call such a representation a symbolic
representation, or symbolic encoding, or instruction handler.

However, function f is unknown. All we are given to learn
about f is a processor P implementing the instruction instance,
which we can sample by providing some input values, executing
the instruction instance, and then observing the output value. In
other words, processor P is a black-box input/output oracle for
instruction instance I . This oracle is denoted Φ(P, I) in what
follows.

Because we want to generate concise and precise symbolic
representations, we will represent inputs and outputs by bit-vectors,
and functions by logic expressions using the theory of bit-vectors
as defined by modern SMT solvers. We will sometimes call such

function representations circuits. If ~i represents two inputs i1 and
i2, each of size s, we will write i1[j] with 0 ≤ j < s to denote the
jth bit of i1.

In summary, the problem considered in this work is:

Given a black-box processor P and an instruction instance
I , how to automatically synthesize a function f that is
semantically equivalent to the oracle Φ(P, I)?

3. Synthesis Procedures

In this section, we review prior synthesis approaches to the function
synthesis problem given a black-box I/O oracle φ = Φ(P, I). We
present two procedures ExhaustVal and DInputVal and discuss
their correctness and scalability.

Both procedures involve three stages: a sampling stage, a syn-
thesis stage, and a verification stage. In the sampling stage, the I/O
oracle is queried on an initial set of inputs and a set of I/O sam-
ples S is obtained. In the synthesis stage, a function is synthesized
whose behavior respects the samples S. This is done by using a
template-based approach (see below) to find a function f that sat-

isfies
V

~i,o∈S
f(~i) = o. The synthesized function f is then passed

to the verification stage to check whether it matches the I/O oracle
on other samples outside S. Samples that fail the verification check
are sent back to the synthesis stage, and the procedure is repeated
until the verification check succeeds.The two procedures differ in
the specific verification checks used.

Before presenting the two procedures in more details, we review
the motivation for template-based synthesis.

3.1 Template-Based Synthesis

A direct approach for synthesizing a function f satisfying the
samples S is to check the satisfiability of the formula

∃f :
^

~i,o∈S

f(~i) = o

Unfortunately, this second-order logic formula can be expensive or
even impossible to check. A common approach to get rid of the
quantification over functions is to use a function template. Infor-
mally, a function template T is a function with some free variables
~c called coefficients. Instantiating the coefficients with concrete val-
ues defines a closed (i.e., fully-defined) function T (~c), called con-
cretization. The set γ(T) of all possible concretizations of a tem-
plate T is thus defined as the set {C | ∃~c : C = T (~c)}. By re-
placing the function f in the synthesis formula above by a function
template T and by existentially quantifying its coefficients, the syn-
thesis problem is reduced to satisfiability checking of a first-order
logic formula

SYNT,S(~c) := ∃~c :
^

~i,o∈S

T (~c,~i) = o

where T (~c,~i) denotes application of function T (~c) with inputs~i.

ExhaustVal(φ, T,nsyn)

1. I := nsyn valid inputs for φ picked randomly

2. Iex := All valid inputs for φ

3. S := Sample(I, φ)

4. Sex := Sample(Iex, φ)

5. ~α := SAT(SYNT,S(~c)) // returns ⊥ if UNSAT

6. if (~α = ⊥) return “Insufficient Template”

7. C := T (~α)

8. Sfail := Verify(C,Sex)

9. if (Sfail == ∅) return C

10. S := S ∪ Sfail

11. goto step 5

Figure 1. Procedure ExhaustVal: Exhaustive Validation

If the template T is expressed as a quantifier-free formula us-
ing the theory of bit-vectors and if the set of possible values for
the coefficients is finite, checking the satisfiability of the formula
SYNT,S(~c) is decidable.

If the above formula is unsatisfiable, then the template cannot
be used to synthesize a function that satisfies the samples S. We
define this property of template sufficiency as follows.

DEFINITION 1. [Template Sufficiency] A template T is sufficient
for abstracting a function C if C ∈ γ(T) .

We now describe the two procedures ExhaustVal and DInputVal
for efficiently solving the template-based synthesis problem. In
what follows, Sample(I, φ) for a set of inputs I and an I/O oracle
φ = Φ(P, I) denotes the set {(~α, φ(~α)) | ~α ∈ I} of samples (I/O
pairs) obtained by executing each input by the oracle. Moreover,
Verify(C,S) for a function C and a set of samples S denotes the

set {(~i, o) ∈ S | C(~i) 6= o} of samples which do not agree with C
(if any).

3.2 Procedure ExhaustVal

The procedure ExhaustVal is described in Figure 1. It takes as
input an I/O oracle φ, a template T and a number of synthesis
samples nsyn .

During the sampling stage (lines 1 − 4), nsyn valid inputs are
chosen randomly to define the set I, while the set Iex contains
all possible valid inputs. Next, two sets S and Sex of I/O samples
are constructed by querying the oracle φ on inputs in I and Iex

respectively.
During the synthesis stage (lines 5 − 8), the synthesis formula

SYNT,S(~c) is checked for satisfiability. If the formula is unsatisfi-
able then the procedure returns “Insufficient Template”, otherwise
the satisfying assignment ~α for all the template coefficients is used
to construct the function C := T (~α).

The verification stage (lines 9− 11) checks whether the synthe-
sized function C agrees with all possible I/O samples Sex using the
procedure Verify. The procedure returns the set Sfail of all sam-
ples that fail. If Sfail = ∅ then the function C is returned, else the
set of failed samples Sfail are added to the set of synthesis samples
S and the procedure loops back to the synthesis stage (line 3).

Note that the synthesis stage is more expensive (NP-hard) than
the verification stage (linear in the size of each sample), which ex-
plains why the procedure ExhaustVal does not consider immedi-
ately the Sex in its synthesis stage. We now state the main proper-
ties of the procedure ExhaustVal.

DInputVal(φ, T,nsyn ,nver)

1. I := nsyn valid inputs for φ picked randomly

2. S := Sample(I, φ)

3. ~α := SAT(SYNT,S(~c)) // returns ⊥ if UNSAT

4. if (~α = ⊥) return “Insufficient Template”

5. C := T (~α)

6. Iver := nver valid inputs for φ picked randomly

7. Sver := Sample(Iver, φ)

8. Sfail := Verify(C,Sver)

9. if (Sfail == ∅)

10. ~i := SAT(DISTINCTT,C,S(~i))

11. if (~i = ⊥) return C

12. S := S ∪ Sample({~i}, φ)

13. goto step 3

14. S := S ∪ Sfail

15. goto step 3

Figure 2. Procedure DInputVal: Distinguishing-Input based Val-
idation

THEOREM 1. Given a template T , an oracle φ, and any nsyn > 0,
the following holds:

1. If the template T is sufficient for abstracting the oracle φ,
then the procedure ExhaustVal(φ, T,nsyn) returns a function
semantically equivalent to φ;

2. Else the procedure returns “Insufficient Template”.

In other words, procedure ExhaustVal is both sound and com-
plete, thanks to its exhaustive validation. Unfortunately, exhaustive
validation does not scale to large inputs, such as 16-bit and 32-bit
instructions. For instance, any 16-bit instruction instance with two
16-bit inputs requires an exhaustive sample set of 232 samples, that
is, more than a billion samples to verify.

3.3 Procedure DInputVal

We now present the procedure DInputVal, described in Figure 2
which offers weaker verification guarantees but scales to larger
input signatures. Besides an I/O oracle φ and a template T , this
procedure takes two additional inputs nsyn and nver denoting the
number of synthesis and verification samples, respectively.

This procedure assumes that the input template T is sufficient
for abstracting the I/O oracle φ. Its goal is to search through all
functions abstracted by the template and to return one that is seman-
tically equivalent to the oracle. If this assumption is right, the pro-
cedure returns a correct function. But if the assumption is wrong,
it may either detect that the template is not sufficient, or return a
wrong function.

Similarly to the procedure ExhaustVal, the sampling stage
(lines 1 − 2) computes a set of synthesis samples S by querying
the oracle φ on a set I of nsyn inputs chosen randomly. The
synthesis stage (lines 3 − 5) checks for a satisfying assignment
for the formula SYNT,S(~c). If the formula is unsatisfiable then the
procedure returns “Insufficient Template”, otherwise the satisfying
assignment ~α for all the template coefficients is used to construct
the function C := T (~α). The procedure differs from ExhaustVal

in its verification stage (lines 6−15). We explain the main idea first
and then present the details.

Intuitively, if we assume that the template T is sufficient for ab-
stracting the oracle φ, and if we can show that all the concretization
functions for T that satisfy samples S are all semantically equiv-
alent, then the synthesized function C is semantically equivalent
to the oracle. In order to show this, we make use of the distin-
guishing input check, introduced in [13]. A distinguishing input

DISTINCTT,C,S(~i) for a function C, a template T and a set S of

samples is an input~i that can be used to distinguish C from another
function that also concretizes the template and satisfies all the sam-

ples in S. Formally, we define DISTINCTT,C,S(~i) as

∃~c : (
^

~j,o∈S

T (~c,~j) = o) ∧ T (~c,~i) 6= C(~i)

If an input ~i satisfies the above formula, then there are at least
two non-equivalent functions that concretize the template and sat-

isfy the samples in S; therefore, by querying the oracle with~i and
adding the resulting I/O sample to S, we can strictly reduce the
number of non-equivalent functions that concretize the template
and satisfy all previous samples. Otherwise, if the formula is unsat-
isfiable, then C is guaranteed to be equivalent to all other functions
that concretize the template and satisfy all previous samples.

We now describe the pseudo-code for the validation stage. The
first step (lines 6− 8) is to sample nver inputs at random and query
the oracle on them, thereby building the set of I/O samples Sver .
Next the synthesized function C is verified against the samples
Sver , and the samples that fail are collected in the set Sfail. If
Sfail 6= ∅, then the samples are added (line 14) to the set of
synthesis samples S and the procedure loops back to the synthesis

stage (line 3). If Sfail = ∅, then the formula DISTINCTT,C,S(~i)
is checked for satisfiability. If it is unsatisfiable, then the function
C is returned; otherwise, the oracle is queried with the satisfying

assignment ~i, the sample Sample({~i}, φ) is added to the set of
synthesis samples S, and the procedure then loops back to the
synthesis stage.

The reason for the verification stage with the samples Sver is
to reduce the number of expensive satisfiability checks of formulas

DISTINCTT,C,S(~i). If the template is sufficient for abstracting the
oracle, any input that distinguishes the synthesized function C from
the oracle is also a distinguishing input. Thus, checking C against a
set of randomly chosen samples provides a cheap way of searching
for distinguishing inputs. We now state the main property of the
procedure DInputVal.

THEOREM 2. Given a template T , an oracle φ, and any nsyn ,
nver > 0, if T is sufficient for abstracting φ, then the procedure
DInputVal(φ, T,nsyn ,nver) returns a function C semantically
equivalent to φ.

A useful corollary is that, if the procedure DInputVal returns “In-
sufficient Template” for any nsyn ,nver , then the template T is in-
deed insufficient for abstracting φ. However, this theorem is weaker
than Theorem 1 as it does not guarantee that the procedure returns
“Insufficient Template” whenever the template is insufficient.

Just like procedure ExhaustVal, DInputVal provides a satis-
factory solution to the instruction handler synthesis problem pro-
vided we can find a template that is sufficient for abstracting the
oracle Φ(P, I). Although the procedure DInputVal scales to in-
struction instances with large inputs, the running time can still be
very long for some templates, as we will see in Section 6. The most
expensive step in the procedure is checking the satisfiability of for-

mulas DISTINCTT,C,S(~i). Since the satisfiability of each such for-
mula depends on a set S of random samples, the running time of
the procedure can vary significantly across various invocations. In
the next section, we present a new synthesis procedure that pro-

vides the same correctness guarantee as the procedure DInputVal,
but alleviates the above limitations.

4. Smart Sampling

In this section, we present a new template-based synthesis proce-
dure SmartVal that provides the same correctness guarantee as
procedure DInputVal but does not require any distinguishing in-
put check. As a result, the procedure has a significantly better and
more predictable running time than the procedure DInputVal. As
with procedure DInputVal, the procedure SmartVal also assumes
that the given template is sufficient for abstracting the given I/O
oracle.

Given a specific template, the main idea is to generate upfront
a set of distinguishing inputs which uniquely determine each pos-
sible solution refining the template. This way, the new synthesis
algorithm converges directly to the unique solution, without re-
quiring any other expensive synthesis-iteration and distinguishing-
input steps.

Recall from section 3.3 that the distinguishing input check is
performed to guarantee that for a template T and a set of synthesis
samples S, the synthesized function C is semantically equivalent to
all functions that concretize template T and satisfy all the samples
in S. In order to avoid the distinguishing input check, we want to
run a (unique) synthesis step with a set of samples obtained with
an input set I such that all the functions that concretize template
T and satisfy all the samples in Sample(I, φ), are all semantically
equivalent. We call such an input set I smart for the template T
and oracle φ. Formally, we have the following.

DEFINITION 2. [Smart Inputs] A set I of inputs is smart for a
template T and an oracle φ if

∀~c : (
^

~j,o∈S

T (~c,~j) = o) ⇒ ¬ DISTINCTT,T (~c),S(~i)

with S = Sample(I, φ).

When a set I of inputs is smart for a template T and an oracle φ,
we write SmartT,φ(I).

The previous definition depends on a specific oracle φ. We can
generalize it and define a stronger property on input sets, which
we call universal smartness for a template T independently of
any specific oracle φ. A set I of inputs is universally smart for a
template T if any two functions that concretize the template and
agree on all the inputs in I are semantically equivalent. Formally,
we have the following.

DEFINITION 3. [Universally Smart Inputs] A set I of inputs is
universally smart for a template T , denoted by USmartT (I), if

∀~c, ~d,~i : (
V

~j∈I
T (~c,~j) = T (~d,~j)) ⇒ T (~c,~i) = T (~d,~i)

By definition, a universally smart input set for a template is also
smart for the template and any possible oracle φ.

LEMMA 3. USmartT (I) ⇒ ∀φ : SmartT,φ(I)

Thus, for a fixed template, and given a set of universally smart
inputs for that template, we are then guaranteed that, irrespective
of the oracle, all functions synthesized by sampling those inputs do
not require any distinguishing input check.

The procedure SmartVal is described in Figure 3. It takes as
input an I/O oracle φ, a template T and a set I of inputs such as
SmartT,φ(I). The procedure has only one sampling and one syn-
thesis stage. The sampling stage (lines 1) computes a set of samples
for the smart set of inputs I by querying the oracle φ. The synthesis
stage (lines 2 − 4) checks the formula SYNT,S(~c) for satisfiability.
If the formula is unsatisfiable, then the procedure returns “Insuf-
ficient Template”; otherwise, the satisfying assignment ~α defines

SmartVal(φ, T, I)

1. S := Sample(I, φ)

2. ~α := SAT(SYNT,S(~c)) // returns ⊥ if UNSAT

3. if (~α = ⊥) return “Insufficient Template”

4. return T (~α)

Figure 3. Procedure SmartVal

the concrete function T (~α), which is then returned. We prove the
following.

THEOREM 4. Given a template T , an I/O oracle φ and a smart set
I of inputs for T and φ, if T is sufficient for abstracting φ, then the
procedure SmartVal(φ, T, I) returns a function C semantically
equivalent to φ.

Like procedure DInputVal, SmartVal is guaranteed to return a
function semantically equivalent to the oracle φ only if the template
T is sufficient for abstracting φ; if this assumption is wrong, it may
either detect that the template is not sufficient, or return a wrong
function. As will be shown in Section 6, SmartVal can be much
faster than DInputVal. But it also requires a set of smart inputs.

We now discuss several approaches to compute smart or univer-
sally smart inputs. Trivially, the set of all possible inputs is univer-
sally smart for any template, but we want smart input sets to be as
small as possible so that the synthesis step is fast.

Brute-force approach. Using Definition 3 for USmartT (I), we
can compute a set I by checking the satisfiability of the formula

∃I : ∀~c, ~d,~i : (
^

~j∈I

T (~c,~j) = T (~d,~j)) ⇒ T (~c,~i) = T (~d,~i)

If such a set I exists, then it is universally smart for T , by defini-
tion. Therefore, a straightforward procedure for synthesizing uni-
versally smart inputs is to check the satisfiability of the above for-
mula for any set I of size 1, then 2, then 3, and so on. This ap-
proach can return a universally smart input set of minimum cardi-
nality. Its drawback is that checking satisfiability of a ∃ ∀ formula
can be expensive.

Greedy approach. Here is a straightforward greedy procedure for
constructing a universally smart set of inputs:

1. I := ∅
2. If USmartT (I) holds then return I

3. Else there exist coefficients ~c, ~d and an input~i such that

(
V

~j∈I
T (~c,~j) = T (~d,~j)) ∧ T (~c,~i) 6= T (~d,~i)

Add~i to the set I and go to step (2)

Unlike the brute-force approach, this approach may not return a
universally smart input set of minimum cardinality. But checking
the validity of USmartT (I) can be cheaper because it avoids the
existential quantifier on I.

Manual approach. Universally smart input sets can be inferred
from the structure of a template. Therefore, they can also be de-
fined manually while designing the template. A manually defined
set I can be verified for universal smartness using the predicate
USmartT (I) and an SMT solver. If the verification fails, then the
set can be used as the initial set for the greedy approach described
above, which would then iteratively enlarge it and eventually return
a universally smart input set.

Note that universally smart input sets need to be constructed
only once for each template, and can then be re-used for all the
instruction instances (oracles) covered by each template. Synthesis
with smart sampling is thus especially attractive when a template

is repeatedly used for many instructions instances, as is the case in
our context.

5. Synthesis Templates for x86

We discuss in this section how to partially automate the construc-
tion of a symbolic execution engine for the x86 processor instruc-
tion set using the synthesis techniques described in the previous
sections. Specifically, we present 6 synthesis templates that to-
gether abstract the semantics of over 500 x86 instruction instances.
These templates are expressed using bit-vector constraints for the
conciseness and precision requirements discussed in Section 2.

The x86 processor has a complex instruction set architecture
(CISC) with 8, 16 and 32 bit instructions. The instructions can be
divided into three broad groups: ALU instructions, floating-point
instructions and SIMD instructions. In this work, we only focus on
ALU instructions since modern SMT solvers supporting the theory
of bit-vectors provide the required building-blocks for expressing
their semantics (concisely and precisely). Each x86 ALU instruc-
tion takes from 0 to 3 inputs and has 0 to 2 outputs, all being stored
in either registers or memory locations. The size of the register and
memory locations determines the size of the individual inputs and
outputs. Typically, most instructions are “overloaded” and can be
executed with 8, 16 or 32 bit inputs. Moreover, the execution of
each instruction can also set or reset special boolean flags, called
EFLAGS. In this work, we consider the 5 most commonly used
flags: the carry flag CF, the overflow flag OF, the zero flag ZF, the
sign flag SF, and the parity flag PF.

As explained in Section 2, when defining instruction instances,
we ignore where the inputs and outputs are stored, and only con-
sider their sizes. For any instruction instance, all its inputs are of
size either 8, 16 or 32 bits. The output of each instruction instance
is either one of the main outputs, whose size is either 8, 16 or 32
bits, or one of the flag outputs, which are all 1-bit in size. As an
example, the instruction SHL corresponds to 3×6 = 18 instruction
instances: for each size of 8, 16 and 32 bits, there are 6 instances, 1
for the main output and 5 for each of the flag outputs.

In order to define a few tractable synthesis templates that are ab-
stract enough to cover the semantics of many x86 ALU instructions,
we first consulted the Intel x86 instruction set reference manual.
Based on a preliminary study, we partitioned the ALU instructions
into 3 groups, based on similarities in their execution semantics.

1. Bit-wise group (BW) contains instructions that perform bit-wise
operations, such as AND, OR, and XOR.
2. Arithmetic group (ARI) includes instructions that perform arith-
metic operations, such as ADD, SUB, and MUL.
3. Bit-Shift group (BS) contains instructions that perform shift, ro-
tate and bit-flip operations, such as SHL, ROL, and BTS.

For each instruction group, we define two templates: one for
the main output instruction instances, called the main template,
and the other for the flag output instruction instances, called the
flag template. Since, for a particular instruction, there are different
instruction instances for the different sizes of inputs and outputs,
we define synthesis templates that are parametric on the input and
output size. From the Intel x86 specification, we learn that the flag
outputs of an instruction often depend on the main output. For
example, the zero flag is often set when the main output is zero. For
this reason, we define each flag template as an extension of the main
template for the corresponding instruction group: the flag template
for an instruction is defined using a symbolic instruction encoding
(a circuit) Cmain for the main output of the same instruction, and
this circuit Cmain is synthesized first.

We now present the 6 templates. Throughout the description, we
use i1, i2, i3 to denote inputs, and omain, oflag to denote the main

and flag outputs, respectively. To simplify the presentation, each
template T is specified as a relation over the coefficients, inputs
and output. In each case, the output is a (deterministic) function of
the other parameters.

5.1 Templates for BW instruction instances

We now describe the main and flag templates for instruction in-
stances in the BW group, which is the simplest of all 3 groups. The
main and flag outputs depend only on two inputs i1, i2, which are
both of the same size s. The main output omain is also always of
size s.

Main template. For all BW instructions, we “guess” that the ith bit
of the main output is the result of a certain bit-wise operation per-
formed on the ith bits of the two inputs. Since there are at most 16
different bit-wise operations, i.e., 16 possible functions from 2-bit
inputs to 1-bit output, the search space is small. For a given size s,
each of the 16 bit-wise operations can be expressed as functions in
the theory of bit-vectors, which we denote by BW0[s], . . . , BW15[s].
Thus, we design the main template such that its concretizations are
exactly the set {BW0[s], . . . , BW15[s]} of functions. The template
formula T -BWmain(c, i1, i2, o) is formally defined as

_

0≤α≤15

(c = α ∧ omain = BWα[s](i1, i2))

It has one coefficient c which ranges over {0, . . . , 15}. When
c = α, the template behaves as the concrete function BWα[s]. The
coefficient c can thus be viewed as a “non-deterministic” choice;
once the value of c is fixed, the nondeterminism disappears.

Note that we first “guessed” the above template from a superfi-
cial (i.e., non detailed) reading of the Intel x86 spec. Later, the ap-
plication of the synthesis algorithms discussed in the previous sec-
tions, including their sampling stages, confirmed in an automated
way (see Sections 6 and 7) that the above template was indeed suf-
ficient to abstract BW instructions.

Flag template. We now define the flag template using the circuit
Cmain previously synthesized for the main output. From the spec-
ification manual, we learn that the flag output depends on the truth
value of certain predicates over the inputs i1, i2 and the main out-
put omain = Cmain(i1, i2). We call each such predicate a factor.
An example of a factor is msb(i1) = 0 which denotes that the most
significant bit of the first input i1 is 0.

Given all the factors ~F := F1, . . . , Fn, the flag circuit is essen-
tially some function from the truth values of some of the factors to
the set {0, 1}. Thus, we define the flag template such that its con-
cretizations are all the possible functions from the truth values of
the factors to the set {0, 1}. A general definition of such a template
for the flag output oflag and coefficients ~c := c0, . . . , cN−1, where

N = 2n, is given by the formula ENUM(~c, ~F , oflag), defined as

(¬F1 ∧ . . . ∧ ¬Fn ∧ oflag = c0)
∨ (¬F1 ∧ . . . ∧ ¬Fn−1 ∧ Fn ∧ oflag = c1)
∨ (¬F1 ∧ . . . ∧ Fn−1 ∧ ¬Fn ∧ oflag = c2)
∨ . . .
∨ (F1 ∧ . . . ∧ Fn ∧ oflag = cN−1)

We now define the factors ~FBW := F1, . . . , F3 used in defining

the flag template T -BWflag for BW instructions.

F1 := msb(Cmain(i1, i2)) = 1
F2 := Cmain(i1, i2) = 0
F3 := parity(Cmain(i1, i2)) = 1

Here msb and parity are the most-significant-bit and parity oper-
ators provided by the theory of bit-vectors. The template formula

T -BWflag(~c, i1, i2) is formally defined as ENUM(~c, ~FBW, oflag)
and makes use of 23 = 8 coefficients ranging over {0, 1}.

5.2 Templates for ARI instruction instances

We now describe the main and flag templates for instruction in-
stances in the set ARI. The main and flag outputs for these instruc-
tions only depend on the first two inputs i1, i2, which could be of
different sizes, denoted by s1, s2 respectively. We use so for the
size of the main output. The flag outputs of ARI instructions not
only depend on the main output but also on an internally computed
overflow output, which gets discarded at the end of the computa-
tion. For instance, the carry flag after executing an ADD instruction
is set whenever the overflow output is strictly greater than zero. We
use oof to denote the overflow output, whose size is also so.

In order to define the flag template, we design our main tem-
plate such that for each concrete value of the coefficients, we syn-
thesize two functions Cmain and Cof for the main and overflow
outputs respectively. This is done by first extending the inputs to
size smax := 2max(s1, s2, so) and then applying them to some
arithmetic operation (depending on the coefficients), as discussed
below. This generates an output of size smax, whose bits 0 to so−1
are considered as the main output while bits so to 2so − 1 define
the overflow output.

Main template. All ARI instructions perform standard arithmetic
operations: addition, subtraction, multiplication and division. How-
ever, they differ in whether the inputs are considered signed or un-
signed. We design the main template T -ARImain such that its con-
cretizations cover all these possibilities.

The template has 5 coefficients denoted by ~c := c0, . . . , c4.
Coefficients c0 and c1 range over {1, 2, 3} and determine whether
the inputs i1, i2 respectively must be sign-extended (case 1), zero-
extended (case 2) or replaced with a constant (case 3). The con-
stants used for the third case are the values of the coefficients c2

and c3, which both range over {0, . . . , 2smax − 1}. The extended
value of inputs i1, i2 are given by the expressions iext

1 , iext
2 defined

as

iext
1 := ITE(c0 = 1, zExt(i1, smax),

ITE(c0 = 2, sExt(i1, smax), c2))
iext
2 := ITE(c1 = 1, zExt(i2, smax),

ITE(c1 = 2, sExt(i2, smax), c3))

Here ITE, zExt and sExt are, respectively, the if-then-else, zero-
extend and sign-extend operators provided by the theory of bit-
vectors.

Coefficient c4 ranges over {1, . . . , 7} and determines the arith-
metic operation that must be applied to the two inputs. The op-
erations provided by the theory of bit-vectors are: addition bvadd

(case 1), subtraction bvsub (case 2), multiplication bvmul (case 3),
unsigned division bvudiv (case 4), unsigned remainder bvurem

(case 5), signed division bvsdiv (case 6), and signed remainder
bvsrem (case 7). For convenience, we write ARI1, . . . , ARI7 to re-
fer to these operations. If c4 = k, then operation ARIk is applied
to the extended inputs, and bits 0 to so − 1 of the output are con-
sidered as the main output of the instance. Thus, in summary, the
template T -ARImain(~c, i1, i2, omain) is defined as

_

1≤α≤7

c4 = α ∧ omain = ARIα(iext
1 , i

ext
2)[0, so − 1]

Once the coefficients ~c for the main template have been synthe-
sized, we define the function for the overflow output as

Cof (i1, i2) := ARIα(iext
1 , i

ext
2)[so, 2so − 1]

Here α is the value of coefficient c4 in ~c, and iext
1 , iext

2 are obtained
by instantiating the concrete values of the coefficients c0, . . . , c3

fixed in ~c.

Flag template. As mentioned earlier, the flag template is built
upon the circuits Cmain and Cof for the main and overflow output

respectively. Like T -BWflag , the flag outputs for ARI instructions

also depend on the truth value of certain factors defined over the
inputs i1, i2, the main output omain = Cmain(i1, i2) and overflow
output oof = Cof (i1, i2). We therefore make use of the construc-

tion ENUM(~c, ~F , oflag) defined for flag output of BW instructions.

The factors ~FARI := F1, . . . , F7 used in defining the flag template

T -ARIflag for ARI instructions are defined as follows:

F1 := msb(i1) = 1
F2 := msb(i2) = 1
F3 := msb(Cmain(i1, i2)) = 1
F4 := parity(Cmain(i1, i2)) = 1
F5 := Cmain(i1, i2) = 0
F6 := Cof (i1, i2) = 0
F7 := Cof (i1, i2) = 2so − 1

The template T -ARIflag(~c, i1, i2) is formally defined as

ENUM(~c, ~FARI, oflag) and makes use of 27 = 128 coefficients
ranging over {0, 1}.

5.3 Templates for BS instruction instances

We now describe the main and flag templates for BS instructions.
The main and flag outputs for these instructions depend on all three
inputs i1, i2, i3. While describing BS instructions we will call the
inputs i1, i2 as the shift inputs and i3 as the count input. The size
of the shift inputs and the main outputs is the same and is denoted
by s. The size of the count input is always 8 bits.

Main template. From the specification manual, we learn that
the execution of all BS instruction instances share the following
common properties. First, the count input is always used after
bit-masking to the lower 5 bits (equivalent to a modulo(%) 32
operation). Second, for a fixed value of the count input, each bit of
the main output is either fixed to 0 or 1, or is a specific bit of one of
the two shift inputs. We use these two properties to design the main
template T -BSmain. The main idea is to case split on the count
input i3 bit-masked to the lower 5 bits and then, for each value
α ∈ {0, . . . , 31}, use coefficients ~cα := cα,0, . . . , cα,s−1, each
ranging over {0, . . . , 2s + 1}, to determine the mapping between
each of the s bits of the output and the bits of the shift inputs. For a
fixed value α of the (bit-masked) count input, the mapping is given
by the relation Pα(~cα, i1, i2, om) defined below

_

0≤β≤s−1

8

>

<

>

:

∨ (0 ≤ cα,β ≤ s − 1 ∧ om[β] = i1[cα,β])
∨ (s ≤ cα,β ≤ 2s − 1 ∧ om[β] = i2[cα,β − s])
∨ (cα,β = 2s ∧ om[β] = 0)
∨ (cα,β = 2s + 1 ∧ om[β] = 1)

9

>

=

>

;

Template T -BSmain(~c, i1, i2, i3, om) is formally defined as
_

0≤α≤31

i3%32 = α ∧ Pα(~cα, i1, i2, om)

It uses 32s coefficients, each ranging over {0, . . . , 2s + 1}.

Flag template. We now define the flag template using the circuit
Cmain for the main output. From the specification manual, we
learn that all the BS instructions set the flag output in a similar
way: for a fixed count input value, the flag output is either a specific
bit of one of the shift inputs, or is set based on the parity or zero-
ness of the main output, or the xor of the most-significant bits of
the first shift input and the main output, or is one of the constants
0 or 1. Thus we define the flag template T -BSflag such that its
concretizations cover all the above cases.

For a fixed value α of the (bit-masked) count input, the template
uses a coefficient cα ranging over {0, . . . , 2s + 4}, to define the
mapping between the shift inputs i1, i2 and the flag output oflag .

This mapping is given by the relation P flag
α (cα, i1, i2, oflag) de-

fined as
0 ≤ cα ≤ s − 1 ∧ oflag = i1[cα]

∨ s ≤ cα ≤ 2s − 1 ∧ oflag = i2[cα]
∨ cα = 2s ∧ (oflag = 1 ⇔ Cmain(i1, i2) = 0)
∨ cα = 2s + 1 ∧ (oflag = 1 ⇔ parity(Cmain(i1, i2)) = 1)
∨ cα = 2s+2 ∧ (oflag = 1 ⇔ (msb(i1)⊕ msb(Cmain(i1, i2)))
∨ cα = 2s + 3 ∧ oflag = 0
∨ cα = 2s + 4 ∧ oflag = 1
The template formula T -BSflag(~c, i1, i2, i3, oflag) is formally de-
fined as

_

0≤α≤31

i3%32 = α ∧ P
flag
α (cα, i1, i2, oflag)

Altogether, the template uses 32 coefficients ~c := c0, . . . , c31,
ranging over {0, . . . , 2s + 4}.

5.4 Smart Inputs and Summary

We presented 6 templates (3 for main outputs and 3 for flag out-
puts) which abstract the semantics of a large number of x86 ALU
instructions. In this section, we discuss some key properties of these
templates. We start by discussing universally smart input sets, fol-
lowed by a summary of the search space (size of the concretization
set) and the circuit size (size of the circuits generated) for each tem-
plate.

Smart inputs. We now present universally smart inputs for the
main templates T -BWmain and T -BSmain, and smart inputs for
the main template T -ARImain and a large subset of ARI instruc-
tions. Those input sets were inferred manually from the structure
of the corresponding template. As will be discussed in the next
two sections, experiments with the procedure DInputVal show that
this procedure performs reasonably well on all the flag templates,
even for instructions with large (32 bits) input sizes, because of
the structural simplicity (DNF formulas with few disjuncts) of the
flag templates; therefore, we do not discuss smart inputs for those.
In contrast, the procedure DInputVal has the worst performance
on the T -BSmain template, for which the use of smart inputs is
much more important. As an illustration, we explain the methodol-
ogy used for arriving at a (single!) universally smart input for the
template T -BWmain. The methodology for the other templates is
similar.

As discussed in Section 5.1, the concretizations of the tem-
plate T -BWmain are all the 16 possible bit-wise operations BWi,
which each take two bits as inputs and return one bit as out-
put. How many inputs are needed to uniquely identify any of
those 16 BWi functions? The answer is 4 provided the 4 inputs
cover all four possible combinations of 0 and 1, namely is the
set {(0, 0), (0, 1), (1, 0), (1, 1)}. Therefore, if a single pair of (bit-
vector) inputs i1, i2, each of size s, for the template T -BWmain

covers these 4 boolean combinations, this single input pair (i1, i2)
is universally smart for the template. A sufficient condition for find-
ing such an input pair is that there exist bit indices k1, k2, k3, k4

such that the set of bit pairs {(i1[k1], i2[k1]), . . . , (i1[k4], i2[k4])}
is equal to the set {(0, 0), (0, 1), (1, 0), (1, 1)}. A pair of inputs
that satisfies the above condition is i1 = 12, i2 = 10. Indeed, the
bit-vector representations of these decimal numbers are i1 = 12 =
0 . . . 01100, i2 = 10 = 0 . . . 01010, for any input size s > 4.
Clearly the condition above is satisfied by the bit indices 0, . . . , 3.
Thus, the input set IBW := {(10, 12)} is universally smart for the

template T -BWmain.
We now give a set of universally smart inputs for the template

T -BSmain. For brevity, we only give the input set IBS8
for the

template instantiated with size 8 bits. Recall from Section 5.3 that
BS instructions take 3 inputs and therefore the set IBS8

is a set of

Template Search space Circuit size

T -BWmain 16 O(1)

T -BWflag 28 O(1)

T -ARImain 21 × 22s O(1)

T -ARIflag 2128 O(1)

T -BSmain (2s + 2)32s O(s)

T -BSflag (2s + 5)32 O(1)

Figure 4. Templates summary

triples (i1, i2, i3). It is defined as follows:

{(255, 0, α) | 0 ≤ α ≤ 31}
∪ {(1, 1, α) | 0 ≤ α ≤ 31}
∪ {(170, 170, α) | 0 ≤ α ≤ 31}
∪ {(204, 204, α) | 0 ≤ α ≤ 31}
∪ {(240, 240, α) | 0 ≤ α ≤ 31}

The total number of inputs in the set IBS8
is 32 × 5 = 160. In

general for size parameter s, we define a universally smart set of
inputs of size 32 × (log(s) + 2).

For the template T -ARImain, we define a set IARI of inputs
which is smart for a large subset of ARI instructions. The set IARI
is defined as

{(17, 5), (200, 59), (170,−59)}

This set is not universally smart for the template T -ARImain be-
cause the set was designed for an earlier version of the template
which did not use the operations bvsdiv and bvsrem, which since
then have been added and are currently handled by the values 6
and 7 of coefficient c4. The earlier template was extended so that it
could cover the main output of the instruction IDIV and a few other
instructions. For the current template, we verified by running the
smart inputs check (Definition 2) that the set IARI is still smart for
the current template and all ARI instructions except IDIV, DIV,CWD,
CWDE, CDQ. In practice, as validated by our experiments, the set
IARI is a good initial set for seeding the DInputVal procedure for
those remaining instructions, and sufficient for our purposes (see
Section 7).

We also performed preliminary experiments to automatically
generate sets of universally smart inputs. For instance, the set
IARI can be augmented to a universally smart input set using the
“greedy” approach described in Section 4: in the 8-bit case, this
results in a (not necessarily minimal) set of 10 universally smart
inputs obtained in 8 secs. In contrast, generating universally smart
input sets with the “brute-force” approach (see Section 4) is much
more computationally expensive. This topic should be investigated
further in future work (see also the discussion in Section 8 on
related work in machine learning).

Template summary. In Figure 4, we present a summary of the
Search space and Circuit size for all the templates. The values for
each of these properties are expressed as functions of the size s.

For the main template T -BWmain, the size of the search space
is 16, which is the number of possible bit-wise operations, and
the circuits generated are always of constant size as they are just
one of the bit-wise operations. The flag template T -BWflag has
a search space of size 28, which is the number of functions from
3 bits (from the 3 factors) to 1 bit. The circuits generated are
again of constant size, in particular equal to the size of the formula

ENUM(~c, ~FBW, oflag). The main template T -ARImain has a search

space of size 21 × 22s, the 22s factor comes from the third and
fourth coefficients which vary over {0, . . . , 2s − 1}. The circuits

generated are of constant size. The flag template T -ARIflag has
a search space of 28, which is the number of functions from 7

Instr nsyn S-Iters Time (ms)

AND8 10 1 26,808
AND8 102 1 26,478

AND8 103 1 26,692

MUL8 10 1 32,462

MUL8 102 1 33,581
MUL8 103 1 40,730

SHL8 10 41 1,171,060
SHL8 102 18 542,963
SHL8 103 1 181,857

Figure 5. Synthesis using Procedure ExhaustVal

bits (from the 7 factors) to 1 bit, and the circuits generated are
again of constant size. The main template T -BSmain has a search
space of size (2s+2)32s, since it has 32s coefficients ranging over
{0, . . . , 2s + 1}. The circuits generated are of size O(s) as each
bit of the output is described individually using a separate circuit.
The flag template T -BSflag has a search space of size (2s + 5)32,
as there are 32 coefficients ranging over {0, . . . , 2s + 4}, and the
circuits generated are of constant size.

6. Experimental Results

We report results of experiments performed with the synthesis
algorithms and templates presented in the previous sections. All
experiments were performed on a x86 HP xw4400 PC with a 32-bit
2.4GHz Intel Core2 processor, 2Gb of RAM and running Windows
Vista. We used the Z3 [3] SMT solver for implementing all the
synthesis algorithms.

We present results of detailed experiments for 3 instructions,
each covered by a different synthesis template: AND with template
T -BWmain, MUL with template T -ARImain, and SHL with template
T -BSmain. For each instruction, we consider their 8-bit, 16-bit
and 32-bit versions to measure the impact of I/O sizes. In all the
following experiments, the maximum number of failed verification
samples (i.e., |Sfail| in Figure 1) is set to 10: when 10 samples have
failed to be verified, the verification stage stops and those samples
are fed back to the synthesis stage.

Figure 5 presents results obtained using the synthesis algorithm
ExhaustVal and for various synthesis sample set sizes nsyn as
defined in Figure 1. The exhaustive verification part of Procedure
ExhaustVal does not scale to the 16-bit and 32-bit versions of
those instructions (which each take two inputs of that size), so
no results are presented for those cases. The number S-Iters of
synthesis iterations is given in the third column. The overall time
(in msecs) required to synthesize a verified circuit is given in the
last column. The best runtime for an instruction is highlighted in
boldface.

For MUL8, the best runtime is obtained with nsyn = 10 as
10 random synthesis samples are sufficient to identify the correct
circuit, so more samples are not necessary. For SHL8, starting with
10 or 100 random synthesis samples requires several expensive
synthesis iterations, while nsyn = 103 converges faster to the
correct circuit. For AND8, all the runtimes are very close, and the
differences are insignificant with respect to the overall runtime.

Figure 6 presents results obtained with the Procedure DInputVal
of Section 3.3, for various numbers of synthesis samples nsyn

and verification samples nver . The number of distinguishing-input
checks is given under the column D-Iters. The best overall time for
any given instruction is again highlighted in boldface.

For AND and MUL, a small set of 10 random synthesis sam-
ples is sufficient to synthesize the correct circuit in one iteration
(S-Iters=1) with a single passing distinguishing-input check (D-

Instr nsyn nver S-Iters D-Iters Time (ms)

AND8 10 10
2 1 1 48

AND8 10 10
3 1 1 414

AND8 10 10
4 1 1 4,007

AND8 10
2

10
2 1 1 68

AND8 10
2

10
3 1 1 429

AND8 10
2

10
4 1 1 4,023

AND8 10
3

10
2 1 1 273

AND8 10
3

10
3 1 1 637

AND8 10
3

10
4 1 1 4,206

AND16 10 10
2 1 1 55

AND16 10 10
3 1 1 484

AND16 10 10
4 1 1 4,791

AND16 10
2

10
2 1 1 79

AND16 10
2

10
3 1 1 509

AND16 10
2

10
4 1 1 4,813

AND16 10
3

10
2 1 1 338

AND16 10
3

10
3 1 1 760

AND16 10
3

10
4 1 1 5,040

AND32 10 10
2 1 1 71

AND32 10 10
3 1 1 619

AND32 10 10
4 1 1 6,497

AND32 10
2

10
2 1 1 98

AND32 10
2

10
3 1 1 642

AND32 10
2

10
4 1 1 6,124

AND32 10
3

10
2 1 1 411

AND32 10
3

10
3 1 1 963

AND32 10
3

10
4 1 1 6,451

Instr nsyn nver S-Iters D-Iters Time (ms)

MUL8 10 10
2 1 1 189

MUL8 10 10
3 1 1 637

MUL8 10 10
4 1 1 4,996

MUL8 10
2

10
2 1 1 1,781

MUL8 10
2

10
3 1 1 1,686

MUL8 10
2

10
4 1 1 6,659

MUL8 10
3

10
2 1 1 8,805

MUL8 10
3

10
3 1 1 13,365

MUL8 10
3

10
4 1 1 14,692

MUL16 10 10
2 1 1 609

MUL16 10 10
3 1 1 1,070

MUL16 10 10
4 1 1 6,179

MUL16 10
2

10
2 1 1 2,864

MUL16 10
2

10
3 1 1 3,729

MUL16 10
2

10
4 1 1 8,363

MUL16 10
3

10
2 - - OOM

MUL16 10
3

10
3 - - OOM

MUL16 10
3

10
4 - - OOM

MUL32 10 10
2 1 1 1,997

MUL32 10 10
3 1 1 2,437

MUL32 10 10
4 1 1 9,133

MUL32 10
2

10
2 1 1 5,469

MUL32 10
2

10
3 1 1 5,008

MUL32 10
2

10
4 1 1 11,587

MUL32 10
3

10
2 - - OOM

MUL32 10
3

10
3 - - OOM

MUL32 10
3

10
4 - - OOM

Instr nsyn nver S-Iters D-Iters Time (ms)

SHL8 10 10
2 14 4 82,184

SHL8 10 10
3 16 3 62,569

SHL8 10 10
4 13 1 60,730

SHL8 10
2

10
2 8 2 41,690

SHL8 10
2

10
3 9 1 38,691

SHL8 10
2

10
4 8 1 58,968

SHL8 10
3

10
2 1 1 21,501

SHL8 10
3

10
3 1 1 23,045

SHL8 10
3

10
4 1 1 49,105

SHL8 10
4

10
2 1 1 78,391

SHL8 10
4

10
3 1 1 84,433

SHL8 10
4

10
4 1 1 103,264

SHL16 10 10
2 20 3 938,122

SHL16 10 10
3 22 1 485,531

SHL16 10 10
4 20 3 1,019,270

SHL16 10
2

10
2 13 3 795,375

SHL16 10
2

10
3 12 2 678,463

SHL16 10
2

10
4 11 1 457,520

SHL16 10
3

10
2 1 1 250,105

SHL16 10
3

10
3 1 1 301,424

SHL16 10
3

10
4 1 1 291,452

SHL16 10
4

10
2 1 1 967,358

SHL16 10
4

10
3 1 1 1,064,090

SHL16 10
4

10
4 1 1 1,046,099

SHL32 10 10
2 31 4 24,168,853

SHL32 10 10
3 31 3 20,107,259

SHL32 10 10
4 31 1 11,754,805

SHL32 10
2

10
2 21 3 16,877,223

SHL32 10
2

10
3 22 3 17,577,444

SHL32 10
2

10
4 20 4 21,620,686

SHL32 10
3

10
2 1 1 4,382,472

SHL32 10
3

10
3 1 1 4,456,942

SHL32 10
3

10
4 1 1 4,707,855

SHL32 10
4

10
2 - - OOM

SHL32 10
4

10
3 - - OOM

SHL32 10
4

10
4 - - OOM

Figure 6. Synthesis using Procedure DInputVal

Iters=1), and the fastest runtime is achieved with the fewest verifi-
cation samples (nver = 102). Note that for MUL16 and MUL32 with
nsyn = 103, the synthesis algorithm runs out of memory (denoted
by “OOM”) and is unable to generate a circuit.

For SHL, the best times are achieved with nsyn = 103 and the
smallest number of verification samples (nver = 100) we consider.
For smaller numbers of synthesis samples, the DInputVal synthe-
sis algorithm requires several synthesis stages and sometimes feed-
back from several distinguishing-input checks, which are expensive
and increase overall runtime. (As an extreme example not shown in
the figure, with nsyn = 0 and nver = 100, the DInputVal algo-
rithm times out after 12h for SHL32.) With a larger set of synthesis
samples (nsyn = 104), the DInputVal algorithm takes more time,
or runs out of memory in the SHL32 case.

Figure 7 presents in its last column the runtimes obtained with
the smart sampling synthesis algorithm SmartVal of Section 4.
These results are compared to the best times obtained with the
two other algorithms as reported in Figures 5 and 6. The speed-up
obtained by an algorithm compared to the one to the immediate left
is indicated by the symbol ÷. In our experiments, the SmartVal

algorithm is between 11 to 68 times faster than the best time
obtained with the DInputVal algorithm, which is itself between 9
to 551 times faster than the ExhaustVal algorithm when the latter
is applicable (i.e., in the 8-bit case only).

7. Overall Results, Lessons Learned, Limitations

Using the 6 templates presented in Section 4 and their associated
smart inputs, we can automatically synthesize bit-vector circuits
for 534 x86 instruction instances (8/16/32-bits, outputs, EFLAGS)
in less than two hours on the regular machine described in the
previous section (2Gb of RAM, 2.4GHz processor). We used the
SmartVal algorithm whenever possible, i.e., whenever a set of
universally smart inputs is available, and used the DInputVal

Instr Exhaust DInput Smart Sampl

AND8 26,478 48 (÷551) 3 (÷16)
AND16 - 55 4 (÷14)
AND32 - 71 4 (÷18)
MUL8 32,462 189 (÷172) 17 (÷11)
MUL16 - 609 20 (÷30)
MUL32 - 1,997 29 (÷68)
SHL8 181,857 21,501 (÷9) 867 (÷25)
SHL16 - 250,105 8,064 (÷31)
SHL32 - 4,382,472 303,970 (÷14)

Figure 7. Synthesis using Procedure SmartVal: runtime (in
msecs) and comparison

algorithm otherwise (e.g., for all EFLAG circuits) still seeded with
the smart inputs defined for that instruction family. We also used a
verification stage with 1000 random verification samples for each
circuit.

Instructions covered include SHL, SHR, SAR, SAL, SHLD,

SHRD, ROL, ROR, RCL, RCR, BT, BTR, BTS, BSWAP, AND,

OR, XOR, TEST, NOT, NEG, XADD, ADD, SUB, INC, DEC,

MUL, IMUL, DIV, IDIV, CWD, CWDE, CDQ, CBW, MOVZX,

MOVSX, CMPXCHG.
During the course of this work, we discovered several interest-

ing and sometimes surprising details about the semantics of x86
instructions.

The Intel x86 reference manual often defines the semantics of
x86 instructions partially, leaving some corner cases “undefined”.
In contrast, our automatic synthesis approach gives a precise se-
mantics to all x86 instructions on the processor which is sampled,
uncovering sometimes seemingly bizarre behaviors. As an exam-
ple, the Intel specification says that the carry flag CF is undefined
after a ROR8 instruction when the count argument modulo 8 is 0; on

an Intel XEON3.7 processor, the CF flag is actually set to 0 when
the count argument is 0, and to 1 when the count argument is 16,
24 or 32. As another example, the Intel spec says that the OF flag of
an ADD instruction is set “according to the result” (i.e., the output);
however, on an Intel XEON3.7 processor, the OF flag is 1 only when
the XOR of the most-significant bit of the two inputs is the negation
of the most-significant bit of the output.

We also discovered cases where observed behaviors contradicts
the x86 reference manual (which is unsurprising given the size and
complexity of the spec). For instance, we discovered while debug-
ging our template T -ARImain that the overflow OF flag should be
set to 0 after executing IMUL8 with 65 and 254 as inputs according
to the Intel spec, while the OF flag is actually set to 1 after the ex-
ecution of this instruction with those inputs on an Intel XEON3.7
processor.

Moreover, we discovered that the semantics of instructions
varies across Intel processors. For instance, on an Intel XEON3.7
or Core2 or i7 M620 processors and in accordance with the x86
spec, executing instructions ROL, SHL or SHR does not set the
overflow OF flag if the count argument is not 1. However, on an In-
tel i7-2620M processor (HP EliteBook 2760p, 2.7Ghz, 8Gb RAM,
64-bit) processor, the OF flag is set to 1 even for certain cases when
the count argument is greater than 1. Our template T -BSflag is
actually unable to capture this behavior, which is why we detected
these corner cases.

Finally, and unsurprisingly, we also discovered several errors
in previous manually-written x86 instruction handlers used in the
whitebox fuzzer SAGE [6].

Our current implementation has several limitations. First, in-
structions like DIV crash (trigger an error) on certain inputs, for
instance when the quotient is larger than the output range. Cur-
rently, we use manually-written input preconditions to prevent such
cases from occurring during synthesis. Such preconditions should
be used as “active checkers” [5] during symbolic execution to check
whether those error cases can be triggered during program analy-
sis. In the future, those preconditions could be synthesized auto-
matically by generating a special additional ERROR output. Second,
instructions like SHL leave the flags ZF, PF and SF “unchanged”
when the count operand is 0, therefore those flags should also be
considered as inputs in those cases. This is not currently handled
by our template T -BSflag .

8. Other Related Work

Synthesizing transfer functions for embedded processors. The
closest work to our work is [19] which presents a system for auto-
matically synthesizing transfer functions for embedded processor
instructions, which can be used for static analysis of embedded ob-
ject code. This prior work synthesizes transfer functions in a given
abstract domain (like intervals or bit-wise domain) and therefore
performs a sound over-approximation of the concrete semantics. In
contrast, our goal is to automatically synthesize a bit-precise sym-
bolic representation of the concrete semantics. The approach used
in [19] involves building a complete truth table by exhaustively
sampling the processor, lifting the table to the abstract domain and
then encoding it using BDDs. Due to the exhaustive sampling, this
approach does not scale beyond 8-bit instructions. Moreover, the
BDD encodings are often too large (several Kbs) to satisfy our con-
ciseness requirement, which is imperative in our context to allow
for bit-precise symbolic execution of long program execution traces
as is needed for whitebox fuzzing [6]. In follow-up work, [18] de-
velops another technique that assumes a structural constraint on
the function being synthesized (analogous to template-based syn-
thesis) and scales to larger instructions. However, the synthesized
functions are again for certain abstract domains. Another differ-

ence with our work is that [18] generates abstract transfer functions
using a simple custom brute-force solver, whereas we encode our
templates as logic formulas in the theory of bit-vectors and carry
out the search using an SMT solver.

Connection to machine learning. There is a close connection be-
tween the notion of universally smart inputs for a template and the
notion of “teaching dimension for a concept class” [7]. Informally,
the teaching dimension of a concept class (consisting of classifiers)
is the minimum number of samples that a teacher must reveal in
order to uniquely identify any concept in the class. The paper [7]
investigates upper and lower bounds on the teaching dimension and
its relation to structural properties of a concept class. Function tem-
plates can essentially be thought of as concept classes (concepts
being the functions represented as relations over inputs and out-
puts). These results on teaching dimension shed light on the con-
nection between templates and the set of universally smart inputs,
and on the complexity of automatically synthesizing the smallest
set of universally smart inputs. Another interesting (and related)
connection that we plan to explore further in the future is that be-
tween the descriptive complexity [11] of a template and the size of
the smallest set of universally smart inputs.

Template-based synthesis. In the last few years, there has been
a large amount of work on automated synthesis using deductive
techniques. A central theme of all these techniques is to express the
synthesis problem as a search problem over a restricted space. The
restricted space is defined either using a template [24, 25], or using
a sketch [21, 22], or using a set of building blocks [9, 13], or using
a restricted language [8, 12]. The synthesis techniques used in this
paper are inspired from and build upon this prior work. The unique
challenges associated with our specific application domain were the
lack of an initial specification and the lack of a final verification
oracle.

Black-box analysis of processors/assemblers. Another area of
recent related work is work on designing and testing CPU emula-
tors [14–16], especially for x86 processors. The goal of this work
is to test whether an emulator faithfully mimics all aspects of the
processor, including various addressing modes, privilege levels and
clock cycles per instruction. [14] uses the architecture specifica-
tion as the starting point for determining what instruction operand
combinations are valid, and then intelligently modifying and test-
ing each combination with various possible “edge case” values. On
the other hand, [15] uses the CPU as the oracle to determine what
byte sequences represent valid instructions and how instructions are
encoded. The valid byte sequences are then run with various mem-
ory and register states. In the same spirit, [10] presents a technique
for testing and reverse engineering assemblers for a given architec-
ture, by testing them with permutations of assembly code and then
decoding the output. The main relation with our work is the idea
of analyzing a black-box system by strategically testing its inter-
face and then inferring internal properties of the system from the
outputs.

9. Conclusion

We showed that automatic synthesis of precise and concise sym-
bolic representations of individual processor instructions is possi-
ble for a complex processor like x86. The main practical advan-
tage of automatic synthesis is the gain in manual labor: instead of
defining manually (probably incomplete and incorrect) detailed in-
struction handlers for 534 x86 ALU instruction instances, synthe-
sis allowed us to define only 6 abstract instruction handlers (tem-
plates), from which 534 correct and precise instruction handlers
were generated automatically, from input/output examples and ex-
pressed concisely as bit-vector constraints.

In this work, we focused on ALU instructions since those are
used in virtually all programs. When symbolically executing a pro-
gram, each instruction is executed symbolically using the corre-
sponding symbolic instruction handler. Sequences of instructions
are handled by combining the symbolic encodings (circuits) of in-
dividual instructions. Conditional statements (jumps) are handled
using the flag circuits. For instance, a jz <addr> jump instruc-
tion is simply mapped to a constraint ZF == 1 where ZF is the
zero-flag circuit synthesized for the instruction immediately prior
to the jump insturction. The circuit for regular memory operations
such as ld (load), mov (move), etc. is simply the identity function.
Handling all those operations (ALU, conditional jumps and regular
memory operations) is already useful for (partial) symbolic execu-
tion of many applications, like whitebox fuzzing of file and packet
parsers [6].

We believe our templates could be extended to cover x86 SIMD
instructions, since they are essentially ALU instructions applied to
vectors of registers. In contrast, extending our approach to floating-
point instructions seems more challenging since most SMT solvers
do not currently handle floating-point arithmetic. Fortunately, for
the purpose of whitebox fuzzing, precise symbolic execution of
floating-point instructions can often be avoided [4].

It would be interesting to design instruction templates for other
processors such as x64 or ARM. Our general synthesis-based ap-
proach should be applicable to those processors as well, but details
of the templates for those could be significantly different.

Acknowledgments

We thank David Molnar for suggesting the problem addressed in
this work, Sumit Gulwani for helpful comments on program syn-
thesis, and Ella Bounimova for interesting discussions on x86 se-
mantics. We also thank the anonymous reviewers for their construc-
tive comments to improve the presentation.

References

[1] D. Brumley, I. Jager, Th. Avgerinos, and E. J. Schwartz. BAP: A
Binary Analysis Platform. In CAV’2011, July 2011.

[2] A. Chlipala. Modular Development of Certified Program Verifiers
with a Proof Assistant. In ICFP’2006, September 2006.

[3] L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver. In
TACAS’2008, April 2008.

[4] P. Godefroid and J. Kinder. Proving Memory Safety of Floating-Point
Computations by Combining Static and Dynamic Program Analysis.
In ISSTA’2010, July 2010.

[5] P. Godefroid, M.Y. Levin, and D. Molnar. Active Property Checking.
In EMSOFT’2008, October 2008.

[6] P. Godefroid, M.Y. Levin, and D. Molnar. Automated Whitebox Fuzz
Testing. In NDSS’2008, February 2008.

[7] S. A. Goldman and M. J. Kearns. On the Complexity of Teaching.
Journal of Computer and System Sciences, 50:303–314, 1992.

[8] S. Gulwani. Automating String Processing in Spreadsheets using
Input-Output Examples. In POPL’2011, January 2011.

[9] S. Gulwani, V. A. Korthikanti, and A. Tiwari. Synthesizing Geometry
Constructions. In PLDI’2011, May 2011.

[10] W. C. Hsieh, D. R. Engler, and G. Back. Reverse-Engineering Instruc-
tion Encodings. In USENIX’2001, June 2001.

[11] N. Immerman. Descriptive complexity. Springer, 1999.

[12] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv. A Simple Induc-
tive Synthesis Methodology and its Applications. In OOPSLA’2010,
October 2010.

[13] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-Guided
Component-Based Program Synthesis. In ICSE’2010, May 2010.

[14] W. Ma, A. Forin, and J. Liu. Rapid Prototyping and Compact Testing
of CPU Emulators. In Proceedings of the 21st IEEE International

Symposium on Rapid System Prototyping, June 2010.

[15] L. Martignoni, R. Paleari, G. Fresi Roglia, and D. Bruschi. Testing
CPU Emulators. In ISSTA’2009, July 2009.

[16] L. Martignoni, R. Paleari, G. Fresi Roglia, and D. Bruschi. Testing
System Virtual Machines. In ISSTA’2010, July 2010.

[17] D. Molnar, X. C. Li, and D. Wagner. Dynamic Test Generation To
Find Integer Bugs in x86 Binary Linux Programs. In Proc. of the 18th

Usenix Security Symposium, August 2009.

[18] J. Regehr and U. Duongsaa. Deriving Abstract Transfer Functions for
Analyzing Embedded Software. In LCTES’2006, 2006.

[19] J. Regehr and A. Reid. HOIST: A System for Automatically Deriving
Static Analyzers for Embedded Systems. In ASPLOS’2004, 2004.

[20] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, Th.
Braibant, M. O. Myreen, and J. Aglave. The Semantics of x86-CC
Multiprocessor Machine Code. In POPL’2009, January 2009.

[21] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu. Program-
ming by Sketching for Bit-Streaming Programs. In PLDI’2005, May
2005.

[22] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A.
Saraswat. Combinatorial Sketching for Finite Programs. In ASP-

LOS’2006, 2006.

[23] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A New
Approach to Computer Security via Binary Analysis. In ICISS’2008,
December 2008.

[24] A. Taly, S. Gulwani, and A. Tiwari. Synthesizing Switching Logic
Using Constraint Solving. In VMCAI’2009, January 2009.

[25] A. Taly and A. Tiwari. Switching Logic Synthesis for Reachability. In
EMSOFT’2010, October 2010.

